Biased Multiobjective Optimization and Decomposition Algorithm
نویسندگان
چکیده
منابع مشابه
Multiobjective Cloud Particle Optimization Algorithm Based on Decomposition
Abstract: The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has received attention from researchers in recent years. This paper presents a new multiobjective algorithm based on decomposition and the cloud model called multiobjective decomposition evolutionary algorithm based on Cloud Particle Differential Evolution (MOEA/D-CPDE). In the proposed method, the best solution...
متن کاملA novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization
Recently, a general-purpose local-search heuristic method called Extremal Optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in multiobjective optimization and proposes a new novel elitist (1+ λ ) multiobjective algorithm, called Multiobjective Extremal Optimization (MOEO). In order...
متن کاملDecomposition evolutionary algorithms for noisy multiobjective optimization
Multi-objective problems are a category of optimization problem that contains more than one objective function and these objective functions must be optimized simultaneously. Should the objective functions be conflicting, then a set of solutions instead of a single solution is required. This set is known as Pareto optimal. Multi-objective optimization problems arise in many real world applicati...
متن کاملConstrained Multiobjective Biogeography Optimization Algorithm
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate di...
متن کاملMultiobjective Optimization by Nessy Algorithm
This paper presents the extension of the Neural Evolutional Strategy System (Nessy) to the multiobjective optimization case. The neural architecture of the Nessy algorithm is extended by using more than one output neuron, one neuron for each objective. The learning law of Nessy is modified according to the presence of multiple measures of performance. Each hidden neuron of the generation layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2017
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2015.2507366